Category Archives: Pancreatic Cancer

Publication: CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan

Thomas R. Cox, Aug 2019

CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan

We are super excited to announce that our recent work in close collaboration with A/Prof Paul Timpson has just been published in Nature Communications (view the full Open-Access article here)

In this work (which was a large international collaboration), co-led by our team and Paul Timpson’s team (also at the Garvan Institute), we show that remodeling of the stromal  tissue in and around pancreatic tumours may be the key to stopping their spread and improving chemotherapy outcomes.

Cancer cell CAF crosstalk

What we did

We already know that tumours are made up of heterogenous populations of cancer cells with different mutational landscapes. Furthermore, recently, the field has begun to realise that the cancer associated fibroblasts (CAFs) present in and around the tumour are also a diverse collection of  subpopulations.

Continue reading

Publication: The Mini‐Organo: A rapid high‐throughput 3D coculture organotypic assay for oncology screening and drug development

Thomas R. Cox, Aug 2019

The Mini‐Organo: A rapid high‐throughput 3D coculture organotypic assay for oncology screening and drug development

Just published in Cancer Reports is our new protocol paper detailing the development of a rapid high-throughput (96wp) 3D organotypic coculture assay that is optimised for screening cancer cell and cancer-associated fibroblast response to drugs in physiologically relevant matrices.

Mini-Organo workflow

Continue reading

Funding: Cancer Council NSW Project Grant

Thomas R. Cox, Mar 2019

Cancer Council NSW grants for innovative cancer research

CCNSW Logo

Great news! The Matrix & Metastasis Lab been awarded a three-year project grant from Cancer Council NSW to explore a new combination approach to treating pancreatic cancer.

The project will look at how to target the Lysyl Oxidase (LOX) family of enzymes in in pancreatic cancer with the goal of improving outcomes in patients.

Pancreatic cancer has one of the poorest survival rates of all cancer, with only 25% of people surviving one year after diagnosis and only 8% for five years. This project will look at the tissue in and around pancreatic cancers, which can affect how successful chemotherapy treatment is in a patient.

The aim is to combining biology and engineering to generate 3D models that mimic tumours, along with cutting edge imaging technology and mouse models, to investigate the potential of co-targeting the Lysyl Oxidase family together with already approved cancer drugs to improve patient outcome.

Thomas Cox CCNSW Awards Evening

Dr Thomas Cox receiving the award on behalf of the team at CCNSW’s annual Research Awards Evening.

Continue reading

Publication: Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

Thomas R. Cox, Apr 2017

ROCK-ing pancreatic cancer to the core

Our new paper on short-term pulsed treatment, or ‘priming’ as a treatment strategy to boost chemotherapy has just been published in Science Translational Medicine.

Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

The research, spearheaded by Dr. Paul Timpson and Dr. Marina Pajic here at the Garvan Institute of Medical Research in Sydney, has uncovered a promising new approach to treating pancreatic cancer. By targeting the tissue surrounding the tumour to make it ‘softer’, it leads to tumours being more responsive to chemotherapy.

Continue reading

Publication: Tissue Fibrosis and Pancreatic Cancer

Thomas R. Cox, Jun 2016

Fibrosis and Cancer: Partners in Crime or Opposing Forces?

Our recent forum discussing the importance of cancer associated fibrosis in pancreatic cancer has just been published in Trends in Cancer

gr1

Targeting the Extracellular Matrix (ECM) in Pancreatic Ductal Adenocarcinoma (PDAC).

What is cancer associated fibrosis?

Continue reading